
Agenda:

• Introduction to Ontoserver 
• What is Ontoserver?  
• Interoperability 
• Syndication 

Access to Central Instance @ Cologne 
• Deployment at Cologne 
• Accessing the server 
• Authentication mechanism 
• Troubleshooting technique 
• Demo



Introduction to Ontoserver

Muhammad Adnan 
Medical Data Integration Center  

University of Cologne, Faculty of Medicine and University 
Hospital Cologne 



What is Ontoserver

• Turnkey, high performance HL7 FHIR Terminology Service 
• Access to all FHIR CodeSystems, SNOMED CT, and LOINC 
• Support all those operations on  

• FHIR Resources 
• LOINC 
• SNOMED CT {with support of ECL (Expression Constraint Language)} 

- Ontoserver API examples: 
- https://documenter.getpostman.com/view/634774/TVsuBmc9 
- Implementation examples: https://aehrc.github.io/fhir-ts-exemplars/

https://documenter.getpostman.com/view/634774/TVsuBmc9
https://aehrc.github.io/fhir-ts-exemplars/


Deployment at Uniklinik Köln

Local Deployment 

• Deploys as a pair of Docker 
containers 

• Ontoserver and Database (& http 
caching proxy) 

• docker-compose file to configure 

• Deployed at Uniklinik Koeln data 
center 

• Central Deployment 

• Deploys as a pair of Docker 
containers 

• Ontoserver and Database (& http 
caching proxy) 

• Read-Only access  

• docker-compose file to configure 

• Deployed at Uniklinik Koeln data 
center



Interoperability! A Solution

Terminology Use: Problem 

• Each clinical providers use their own interpretation of a 
patient condition 

• Multiple type of documentation  
• Several terms used to describe Patient condition 
• Cause confusion at the end!  

Bigger Picture: how to make this communication 
interoperable? 

• By using Standard Code and Code Systems 
• Independent of language 
• Consistent across systems  



Syndication
• Definition: 

• Syndication refers to the process of distributing 
and updating content from a central source to 
multiple endpoints.  

• Ontoserver can advertise that it allows other 
servers to fetch Codesystems from it 

• These are then made available for the down-
stream servers 

• Do note that you trigger syndication manually



Key Features of Ontoserver Syndication

Syndication API: 
Ontoserver’s Syndication API allows it to connect to upstream syndication feeds and import terminology content. 
This API supports various FHIR resources and binary indexes, making it easy to deploy and access the latest 
terminologies. 

Importing and Updating Terminologies: 
With Ontoserver, you can import content from syndication sources using its built-in syndication client. This process 
can be configured to occur at startup, manually, automatically when new content is available, or on a schedule. 

Configuring Syndication Feeds: 
Administrators can configure Ontoserver with multiple upstream syndication feeds. These feeds can be set up to 
require authentication, ensuring secure and controlled access to terminology updates.



Why syndicate? Benefits?

Ensuring Consistency and Accuracy: 
By using syndication, Ontoserver ensures that all connected systems have consistent and accurate terminology 
data, reducing the risk of errors and discrepancies. 

Reducing Administrative Overhead: 
Syndication automates the process of updating terminologies, significantly reducing the administrative burden 
on healthcare providers and IT staff. 

Enhancing Interoperability: 
With up-to-date terminologies, Ontoserver enhances interoperability between different healthcare systems, 
facilitating seamless data exchange and improving patient care



Important Configuration!

• Initial setup of up-stream (source): 
-  Feed location 
 atom.syndication.feedLocation=file://syndication.xml 
- Enable security 

- Ontoserver.security.enabled 
- Ontoserver.security.readOnly.fhir=true 
- Ontoserver.security.readOnly.api=true 
- Ontoserver.security.readOnly.synd=true 

- Config memory 
- JAVA_OPTS=-Xmx16G 

- Syndication base URLs 
- Ontoserver.sysd.base={{source_url}}/synd 
- Ontoserver.fhir.base={{source_url}}/fhir



Syndication workflow
- Disable Security of source 
- Upload a new CodeSystem to source 
 -   FHIR CodeSystem: 

- PUT {{source_url}}/fhir/CodeSystem/{{CodeSystemId}} 

- SNOMED/LOINC:  
- POST {{source_url}}/fhir/CodeSystem/$x-uploadexternal?system={{System}}

&version={{Version}} 

- also set SyndicationStatus: 
- POST {{source_url}}/synd/setIndexSyndicationStatus?codeSystemId={{System}}

&syndicate=true&codeSystemVersion={{Version}} 
- Enable Security on source



Syndication workflow
- Import from source:  

- FHIR CodeSystem: 
- GET {{client_url}}/synd/fetchSyndicatedContentEntry?

resourceType=CodeSystem&url={{CodeSystemUrl}}&version={{Version}} 

- SNOMED/LOINC:  
- POST {{client_url}}/api/indexCodeSystem?codeSystemId={{CodeSystemId}}

&validate=false&codeSystemVersion={{Version}} 

-  OntoCommand:  
- Dashboard (GUI) available at 

- https://ontoserver.csiro.au/ui

https://ontoserver.csiro.au/ui


Encountered issues
CodeSystem with broken IndexStatus 

- Solution: re-index CodeSystem 

Timeout during syndication 
- Potential cause: many CodeSystems/ValueSets on the server 
- Solution: configure higher timeouts in clients 

Unable to syndicate with Ontoserver behind Proxy 
- Potential cause: base URL(s) are set explicitly and incorrectly 
- Solution: remove those settings, let Ontoserver auto-detect



 Muhammad Adnan | @ MeDIC Köln

Access to Central Instance of 
Terminology Server



Deployment at Uniklinik Köln

Local Deployment 

• Deploys as a pair of Docker 
containers 

• Ontoserver and Database (& http 
caching proxy) 

• docker-compose file to configure 

• Deployed at Uniklinik Koeln data 
center 

• Central Deployment 

• Deploys as a pair of Docker 
containers 

• Ontoserver and Database (& http 
caching proxy) 

• Read-Only access  

• docker-compose file to configure 

• Deployed at Uniklinik Koeln data 
center



Authentication mechanism

Mutual TLS – GÉANT PKI 

GÉANT User certificate 

GÉANT 802.1X Client certificate 
- clientAuth, serverAuth

1 2

IP Allowed-list 

Dedicated / Static IP 
Address 

Admission form signed by 
PI or Site representative



Network architecture
Scenario 1: Direct communication without corporate proxy



Network Architecture!
Scenario 2: Communication through corporate proxy



Accessing the CTS 

Access as User 
• Obtain appropriate GÉANT certificate from your institution 

• Convert the certificate to a PKCS (.pfx or p12) format 

• Upload certificate to browser or client 

• https://terminology-highmed.medic.medfak.uni-koeln.de/fhir/metadata



Acess as CLIENT 
1. Obtain appropriate GÉANT certificate from 

your institution 

2. Load client certificates using a reverse-proxy 
like Apache or Nginx 

3. Enable SSL verify (for mutual TLS) 

4. Configure proxy pass 
https://terminology-highmed.medic.medfak.uni-koeln.de:443

Accessing the CTS 



Troubleshooting techniques

• Use the right certificate 
• For browsers use .pfx or .p12 

• Try icognito mode 
• Preferred configuration for client machine – Use a proxy like 

Nginx to load complete certificates chain (.pem, .crt format) 

• Contact support team: support-medic@uni-koeln.de

mailto:support-medic@uni-koeln.de


• Our partners from Lübeck are actively 
contributing to the development of Ontoserver 

• Some tools for accessing FHIR API’s , 
implementation via Python and Java 

     https://github.com/itcr-uni-luebeck/fhir-term-
samples 

Working with FHIR Terminology Service –  
Developer’s Perspective



 
  
- SNOMED CT (Available on Onterserver) 
- ORDO (Orpha.net) / ORPHAcodes 
- OMIM (OMIM (Online Mendelian Inheritance in Man) 
- HGNC-NR 
- HPO (Human Phenotype Ontology) 
- ICF (International Classification of  Functioning, Disability 
and Health) 
- HGVS  
- ICD10GM (Available on Onterserver) 
- AlphaID (Available on Onterserver) 
- LOINC (Available on Onterserver)

http://orpha.net/


25.01.2023 | Muhammad Adnan | @ MeDIC Köln

DEMO


