

Mettertron – Bridging Metadata Repositories and Terminology Servers

J. Schladetzky¹, A. Kock-Schoppenhauer¹, C. Drenkhahn^{1,2}, J. Ingenerf^{1,2}, J. Wiedekopf¹ ¹IT Center for Clinical Research, University of Lübeck ²Institute of Medical Informatics, University of Lübeck

68. GMDS-Jahrestagung, Heilbronn

- Secondary use of clinical data plays crucial role for current research
- Interoperability is fundamental for achieving goals
- Syntactic interoperability:
 - FHIR, openEHR
- Semantic interoperability:
 - Terminologies, classifications, value sets etc. (SNOMED CT, LOINC)

- Secondary use of clinical data plays crucial role for current research
- Interoperability is fundamental for achieving goals
- Syntactic interoperability:
 - FHIR, openEHR
 - Metadata repositories (MDRs) for metadata
- Semantic interoperability:
 - Terminologies, classifications, value sets etc. (SNOMED CT, LOINC)
 - Metadata repositories (MDRs) for metadata

- Secondary use of clinical data plays crucial role for current research
- Interoperability is fundamental for achieving goals
- Syntactic interoperability:
 - FHIR, openEHR
 - Metadata repositories (MDRs) for metadata
- Semantic interoperability:
 - Coding systems (SNOMED CT, LOINC, ICD), value set bindings
 - Metadata repositories (MDRs) for metadata
 - Terminology servers (TS) for terminological services

- MDRs and TS not considered related
 - ightarrow Separate development and research cycles for both systems
- Need for maintenance of terminological content in MDR
- Problems:
 - Limited support for complex terminologies like SNOMED CT
 - Maintaining synchronicity and consistency between MDR and TS
- Previous work: TermiCron
 - Generate resources for MDR based on TS
 - Updates/deletions can cause conflicts
 - \rightarrow Conclusion: Terminology should not be maintained in the MDR

Methods

- Terminology binding
 - Data elements bound to use-case specific ValueSets (VS)
 - CodeSystems (CS) containing all concepts (and their properties) of a terminology, basis for VS
 - ConceptMaps (CM) for mappings between two VS
- ISO/IEC 11179 and ISO/TS 21526
 - Standards for MDRs in general (11179) and for healthcare (21526)
 - Anticipate binding against external VSs

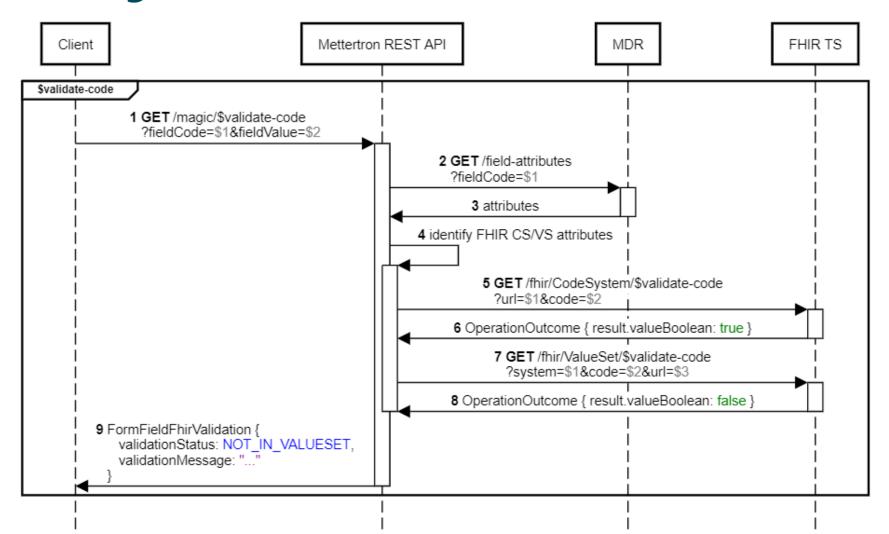
Goals

- Link MDR and TS, fully delegating terminology tasks to TS
- No maintenance of terminological resources in MDR
- Achieve separation of concerns with clear split of responsibilities
- Improve support for complex terminologies

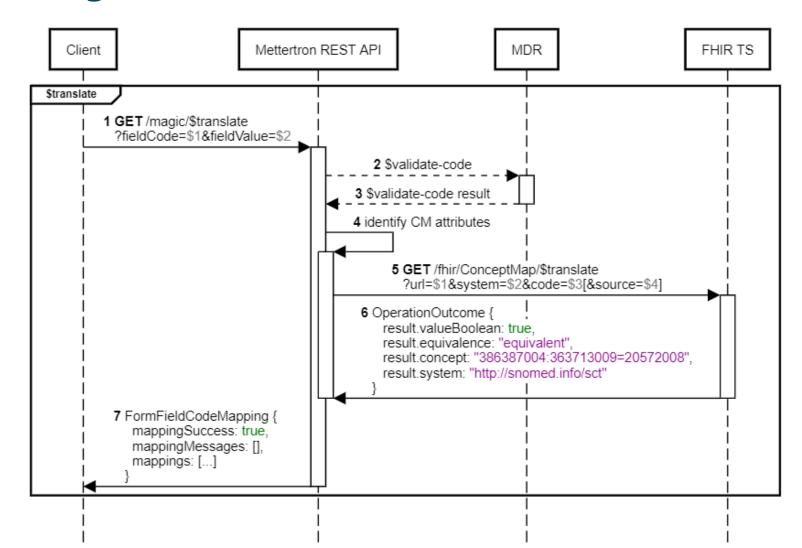
Mettertron

- Middleware acting as proxy in front of MDR
- Written in Kotlin using Ktor framework, runs in a JVM
- Passes MDR-API requests on to MDR
- Offer endpoints mirroring those from the FHIR terminological module
 - \$validate-code: Verification if a code belongs to CS/VS
 - \$translate: Translate a code from one VS to another
- Defined attributes for terminological parameters of data elements
 - Attributes contain canonical URLs for CS/VS/CM
 - Attribute names freely configurable
- Currently supports Data Element Hub and CentraXX[®] MDR

Example


• Attributes in CentraXX[®] MDR

Edit Attribute values		
Domain	Name	Value
fhir-terminology	FHIR-MapsToCS	http://snomed.info/sct?fhir_vs=isa/118956008
fhir-terminology	FHIR-ValueFromCS	https://imi.uni-luebeck.de/fhir/CodeSystem/ICD-O-M
fhir-terminology	FHIR-ValueFromVS	https://imi.uni-luebeck.de/fhir/ValueSet/ICD-O-M
fhir-terminology	FHIR-ConceptMap	https://imi.uni-luebeck.de/fhir/ConceptMap/ICD-O-Topography_to_SNOMED



Sequence diagram: \$validate-code

Sequence diagram: \$translate

Discussion

- Approach's validity tested with data element bound to ICD-10-GM and SNOMED CT
- Feasible in terms of performance, dependent of TS
- TS interchangeable due to FHIR-API
- MDR **not** interchangeable due to very different APIs
 - Data Element Hub: /element/\$urn/slots
 - CentraXX[®] MDR: /definitions/attribute/definition/version?code=\$code&version=\$version
- Opinion: Best approach would be integration of such logic directly into MDR

Conclusion

- Solution simplifies maintenance of terminological resources
- Bridging the gap between MDR and TS fosters sharing and reuse of metadata
- Standardized MDR-API necessary to make MDRs interchangeable
- Mettertron facilitates combined use of a TS and a MDR through its API
 - Enables use of TS where MDR does not offer support for terminological services
 - improves on our previous work but direct integration in MDR highly preferable

Contact

Jan Schladetzky, M.Sc. Research Associate

University of Lübeck IT Center for Clinical Research Ratzeburger Allee 160 23562 Lübeck

- j.schladetzky@uni-luebeck.de
- jan.schladetzky@uksh.de

